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UMCG Userspace API
User Managed Concurrency Groups (UMCG) is an M:N threading subsystem/toolkit that lets user
space application developers implement in-process user space schedulers.

Why? Heterogeneous in-process workloads
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Why? Heterogeneous in-process workloads
Linux kernel's CFS scheduler is designed for the "common" use case, with efficiency/throughput in
mind. Work isolation and workloads of different "urgency" are addressed by tools such as cgroups,
CPU affinity, priorities, etc., which are difficult or impossible to efficiently use in-process.

For example, a single DBMS process may receive tens of thousands requests per second; some of
these requests may have strong response latency requirements as they serve live user requests (e.g.
login authentication); some of these requests may not care much about latency but must be served
within a certain time period (e.g. an hourly aggregate usage report); some of these requests are to be
served only on a best-effort basis and can be NACKed under high load (e.g. an exploratory
research/hypothesis testing workload).

Beyond different work item latency/throughput requirements as outlined above, the DBMS may
need to provide certain guarantees to different users; for example, user A may "reserve" 1 CPU for
their high-priority/low latency requests, 2 CPUs for mid-level throughput workloads, and be
allowed to send as many best-effort requests as possible, which may or may not be served,
depending on the DBMS load. Besides, the best-effort work, started when the load was low, may
need to be delayed if suddenly a large amount of higher-priority work arrives. With hundreds or
thousands of users like this, it is very difficult to guarantee the application's responsiveness using
standard Linux tools while maintaining high CPU utilization.

Gaming is another use case: some in-process work must be completed before a certain deadline
dictated by frame rendering schedule, while other work items can be delayed; some work may need
to be cancelled/discarded because the deadline has passed; etc.

User Managed Concurrency Groups is an M:N threading toolkit that allows constructing user space
schedulers designed to efficiently manage heterogeneous in-process workloads described above
while maintaining high CPU utilization (95%+).
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Requirements
One relatively established way to design high-efficiency, low-latency systems is to split all work
into small on-cpu work items, with asynchronous I/O and continuations, all executed on a thread
pool with the number of threads not exceeding the number of available CPUs. Although this
approach works, it is quite difficult to develop and maintain such a system, as, for example, small
continuations are difficult to piece together when debugging. Besides, such asynchronous callback-
based systems tend to be somewhat cache-inefficient, as continuations can get scheduled on any
CPU regardless of cache locality.

M:N threading and cooperative user space scheduling enables controlled CPU usage (minimal OS
preemption), synchronous coding style, and better cache locality.

Specifically:

a variable/fluctuating number M of "application" threads should be "scheduled over" a
relatively fixed number N of "kernel" threads, where N is less than or equal to the number of
CPUs available;
only those application threads that are attached to kernel threads are scheduled "on CPU";
application threads should be able to cooperatively yield to each other;
when an application thread blocks in kernel (e.g. in I/O), this becomes a scheduling event
("block") that the userspace scheduler should be able to efficiently detect, and reassign a
waiting application thread to the freeded "kernel" thread;
when a blocked application thread wakes (e.g. its I/O operation completes), this even
("wake") should also be detectable by the userspace scheduler, which should be able to either
quickly dispatch the newly woken thread to an idle "kernel" thread or, if all "kernel" threads
are busy, put it in the waiting queue;
in addition to the above, it would be extremely useful for a separate in-process "watchdog"
facility to be able to monitor the state of each of the M+N threads, and to intervene in case of
runaway workloads (interrupt/preempt).

UMCG kernel API
Based on the requrements above, UMCG kernel API is build around the following ideas:

UMCG server: a task/thread representing "kernel threads", or CPUs from the requirements
above;
UMCG worker: a task/thread representing "application threads", to be scheduled over servers;
UMCG task state: (NONE), RUNNING, BLOCKED, IDLE: states a UMCG task (a server or
a worker) can be in;
UMCG task state flag: LOCKED, PREEMPTED: additional state flags that can be ORed with
the task state to communicate additional information to the kernel;
struct umcg_task: a per-task userspace set of data fields, usually residing in the TLS, that
fully reflects the current task's UMCG state and controls the way the kernel manages the task;
sys_umcg_ctl(): a syscall used to register the current task/thread as a server or a worker, or
to unregister a UMCG task;
sys_umcg_wait(): a syscall used to put the current task to sleep and/or wake another task,
pontentially context-switching between the two tasks on-CPU synchronously.

Servers
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When a task/thread is registered as a server, it is in RUNNING state and behaves like any other
normal task/thread. In addition, servers can interact with other UMCG tasks via sys_umcg_wait():

servers can voluntarily suspend their execution (wait), becoming IDLE;
servers can wake other IDLE servers;
servers can context-switch between each other.

Note that if a server blocks in the kernel not via sys_umcg_wait(), it still retains its RUNNING
state.

Also note that servers can be used for fast on-CPU context switching across process boundaries;
server-worker interactions assume they belong to the same mm.

See the next section on how servers interact with workers.

Workers
A worker cannot be RUNNING without having a server associated with it, so when a task is first
registered as a worker, it enters the IDLE state.

a worker becomes RUNNING when a server calls sys_umcg_wait to context-switch into it;
the server goes IDLE, and the worker becomes RUNNING in its place;
when a running worker blocks in the kernel, it becomes BLOCKED, its associated server
becomes RUNNING and the server's sys_umcg_wait() call from the bullet above returns; this
transition is sometimes called "block detection";
when the syscall on which a BLOCKED worker completes, the worker becomes IDLE and is
added to the list of idle workers; if there is an idle server waiting, the kernel wakes it; this
transition is sometimes called "wake detection";
running workers can voluntarily suspend their execution (wait), becoming IDLE; their
associated servers are woken;
a RUNNING worker can context-switch with an IDLE worker; the server of the switched-out
worker is transferred to the switched-in worker;
any UMCG task can "wake" an IDLE worker via sys_umcg_wait(); unless this is a server
running the worker as described in the first bullet in this list, the worker remain IDLE but is
added to the idle workers list; this "wake" operation exists for completeness, to make sure
wait/wake/context-switch operations are available for all UMCG tasks;
the userspace can preempt a RUNNING worker by marking it RUNNING|PREEMPTED and
sending a signal to it; the userspace should have installed a NOP signal handler for the signal;
the kernel will then transition the worker into IDLE|PREEMPTED state and wake its associated
server.

UMCG task states
Important: all state transitions described below involve at least two steps: the change of the state
field in struct umcg_task, for example RUNNING to IDLE, and the corresponding change in struct
task_struct state, for example a transition between the task running on CPU and being
descheduled and removed from the kernel runqueue. The key principle of UMCG API design is that
the party initiating the state transition modifies the state variable.

For example, a task going IDLE first changes its state from RUNNING to IDLE in the userpace and then
calls sys_umcg_wait(), which completes the transition.
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Note on documentation: in include/uapi/linux/umcg.h, task states have the form
UMCG_TASK_RUNNING, UMCG_TASK_BLOCKED, etc. In this document these are usually referred to
simply RUNNING and BLOCKED, unless it creates ambiguity. Task state flags, e.g. UMCG_TF_PREEMPTED,
are treated similarly.

UMCG task states reflect the view from the userspace, rather than from the kernel. There are three
fundamental task states:

RUNNING: indicates that the task is schedulable by the kernel; applies to both servers and
workers;
IDLE: indicates that the task is not schedulable by the kernel (see umcg_idle_loop() in
kernel/sched/umcg.c); applies to both servers and workers;
BLOCKED: indicates that the worker is blocked in the kernel; does not apply to servers.

In addition to the three states above, two state flags help with state transitions:

LOCKED: the userspace is preparing the worker for a state transition and "locks" the worker
until the worker is ready for the kernel to act on the state transition; used similarly to
preempt_disable or irq_disable in the kernel; applies only to workers in RUNNING or IDLE
state; RUNNING|LOCKED means "this worker is about to become RUNNING, while IDLE|LOCKED
means "this worker is about to become IDLE or unregister;
PREEMPTED: the userspace indicates it wants the worker to be preempted; there are no
situations when both LOCKED and PREEMPTED flags are set at the same time.

struct umcg_task
From include/uapi/linux/umcg.h:

struct umcg_task { 
      uint32_t        state;                  /* r/w */ 
      uint32_t        next_tid;               /* r   */ 
      uint64_t        idle_workers_ptr;       /* r/w */ 
      uint64_t        idle_server_tid_ptr;    /* r*  */ 
}; 

Each UMCG task is identified by struct umcg_task, which is provided to the kernel when the task
is registered via sys_umcg_ctl().

uint32_t state: the current state of the task this struct identifies, as described in the
previous section. Readable/writable by both the kernel and the userspace.

bits 0 - 7: task state (RUNNING, IDLE, BLOCKED);
bits 8 - 15: state flags (LOCKED, PREEMPTED);
bits 16 - 23: reserved; must be zeroes;
bits 24 - 31: for userspace use.

uint32_t next_tid: contains the TID of the task to context-switch-into in
sys_umcg_wait(); can be zero; writable by the userspace, readable by the kernel; if this is a
RUNNING worker, this field contains the TID of the server that should be woken when this
worker blocks; see sys_umcg_wait() for more details;

uint64_t idle_workers_ptr: this field forms a single-linked list of idle workers: all
RUNNING workers have this field set to point to the head of the list (a pointer variable in the
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userspace).

When a worker's blocking operation in the kernel completes, the kernel changes the worker's
state from BLOCKED to IDLE and adds the worker to the top of the list of idle workers using this
logic:

/* kernel side */ 
u64 *head = (u64 *)(worker->idle_workers_ptr); /* get the head pointer */ 
u64 *first = (u64 *)*head; /* get the first element */ 

/* make the worker's ptr point to the first element */ 
worker->idle_workers_ptr = first; 

/* make the head pointer point to this worker */ 
if (cmpxchg(head, &first, &worker->idle_workers_ptr)) 
    /* success */ 
else 
    /* retry, with exponential back-off */ 

In the userspace the list is cleared atomically using this logic:

/* userspace side */
uint64_t *idle_workers = (uint64_t *)*head; 

/* move the list from the global head to the local idle_workers */ 
if (cmpxchg(&head, &idle_workers, NULL)) 
    /* success: process idle_workers */ 
else 
    /* retry */ 

The userspace re-points workers' idle_workers_ptr to the list head variable before the worker
is allowed to become RUNNING again.

uint64_t idle_server_tid_ptr: points to a pointer variable in the userspace that points to
an idle server, i.e. a server in IDLE state waiting in sys_umcg_wait(); read-only; workers
must have this field set; not used in servers.

When a worker's blocking operation in the kernel completes, the kernel changes the worker's
state from BLOCKED to IDLE, adds the worker to the list of idle workers, and checks whether
*idle_server_tid_ptr is not zero. If not, the kernel tries to cmpxchg() it with zero; if
cmpxchg() succeeds, the kernel will then wake the server. See State transitions below for
more details.

sys_umcg_ctl()
int sys_umcg_ctl(uint32_t flags, struct umcg_task *self) is used to register or unregister
the current task as a worker or server. Flags can be one of the following:

UMCG_CTL_REGISTER: register a server;
UMCG_CTL_REGISTER | UMCG_CTL_WORKER: register a worker;
UMCG_CTL_UNREGISTER: unregister the current server or worker.

When registering a task, self must point to struct umcg_task describing this server or worker; the
pointer must remain valid until the task is unregistered.
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When registering a server, self->state must be RUNNING; all other fields in self must be zeroes.

When registering a worker, self->state must be IDLE; self->idle_server_tid_ptr and
self->idle_workers_ptr must be valid pointers as described in struct umcg_task;
self->next_tid must be zero.

When unregistering a task, self must be NULL.

sys_umcg_wait()
int sys_umcg_wait(uint32_t flags, uint64_t abs_timeout) operates on registered UMCG
servers and workers: struct umcg_task *self provided to sys_umcg_ctl() when registering the
current task is consulted in addition to flags and abs_timeout parameters.

The function can be used to perform one of the three operations:

wait: if self->next_tid is zero, sys_umcg_wait() puts the current server or worker to sleep;
wake: if self->next_tid is not zero, and flags & UMCG_WAIT_WAKE_ONLY, the task
identified by next_tid is woken (must be in IDLE state);
context switch: if self->next_tid is not zero, and !(flags & UMCG_WAIT_WAKE_ONLY), the
current task is put to sleep and the next task is woken, synchronously switching between the
tasks on the current CPU on the fast path.

Flags can be zero or a combination of the following values:

UMCG_WAIT_WAKE_ONLY: wake the next task, don't put the current task to sleep;
UMCG_WAIT_WF_CURRENT_CPU: wake the next task on the curent CPU; this flag has an effect
only if UMCG_WAIT_WAKE_ONLY is set: context switching is always attempted to happen on the
curent CPU.

The section below provides more details on how servers and workers interact via sys_umcg_wait(),
during worker block/wake events, and during worker preemption.

State transitions
As mentioned above, the key principle of UMCG state transitions is that the party initiating the
state transition modifies the state of affected tasks.

Below, "TASK:STATE" indicates a task T, where T can be either W for worker or S for server, in state
S, where S can be one of the three states, potentially ORed with a state flag. Each individual state
transition is an atomic operation (cmpxchg) unless indicated otherwise. Also note that the order of
state transitions is important and is part of the contract between the userspace and the kernel.
The kernel is free to kill the task (SIGSEGV) if the contract is broken.

Some worker state transitions below include adding LOCKED flag to worker state. This is done to
indicate to the kernel that the worker is transitioning state and should not participate in the
block/wake detection routines, which can happen due to interrupts/pagefaults/signals.

IDLE|LOCKED means that a running worker is preparing to sleep, so interrupts should not lead to
server wakeup; RUNNING|LOCKED means that an idle worker is going to be "scheduled to run", but
may not yet have its server set up properly.
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Key state transitions:

server to worker context switch ("schedule a worker to run"): S:RUNNING+W:IDLE =>
S:IDLE+W:RUNNING:

in the userspace, in the context of the server S running:
S:RUNNING => S:IDLE (mark self as idle)
W:IDLE => W:RUNNING|LOCKED (mark the worker as running)
W.next_tid := S.tid; S.next_tid := W.tid (link the server with the worker)
W:RUNNING|LOCKED => W:RUNNING (unlock the worker)
S: sys_umcg_wait() (make the syscall)

the kernel context switches from the server to the worker; the server sleeps until it
becomes RUNNING during one of the transitions below;

worker to server context switch (worker "yields"): S:IDLE+W:RUNNING =>
S:RUNNING+W:IDLE:

in the userspace, in the context of the worker W running (note that a running worker
has its next_tid set to point to its server):

W:RUNNING => W:IDLE|LOCKED (mark self as idle)
S:IDLE => S:RUNNING (mark the server as running)
W: sys_umcg_wait() (make the syscall)

the kernel removes the LOCKED flag from the worker's state and context switches from
the worker to the server; the worker sleeps until it becomes RUNNING;

worker to worker context switch: W1:RUNNING+W2:IDLE => W1:IDLE+W2:RUNNING:
in the userspace, in the context of W1 running:

W2:IDLE => W2:RUNNING|LOCKED (mark W2 as running)
W1:RUNNING => W1:IDLE|LOCKED (mark self as idle)
W2.next_tid := W1.next_tid; S.next_tid := W2.next_tid (transfer the
server W1 => W2)
W1:next_tid := W2.tid (indicate that W1 should context-switch into W2)
W2:RUNNING|LOCKED => W2:RUNNING (unlock W2)
W1: sys_umcg_wait() (make the syscall)

same as above, the kernel removes the LOCKED flag from the W1's state and context
switches to next_tid;

worker wakeup: W:IDLE => W:RUNNING:
in the userspace, a server S can wake a worker W without "running" it:

S:next_tid :=W.tid
W:next_tid := 0
W:IDLE => W:RUNNING
sys_umcg_wait(UMCG_WAIT_WAKE_ONLY) (make the syscall)

the kernel will wake the worker W; as the worker does not have a server assigned,
"wake detection" will happen, the worker will be immediately marked as IDLE and
added to idle workers list; an idle server, if any, will be woken (see 'wake detection'
below);
Note: if needed, it is possible for a worker to wake another worker: the waker marks
itself "IDLE|LOCKED", points its next_tid to the wakee, makes the syscall, restores its
server in next_tid, marks itself as RUNNING.

block detection: worker blocks in the kernel: S:IDLE+W:RUNNING => S:RUNNING+W:BLOCKED:
when a worker blocks in the kernel in RUNNING state (not LOCKED), before descheduling
the task from the CPU the kernel performs these operations:

W:RUNNING => W:BLOCKED
S := W.next_tid
S:IDLE => S:RUNNING
try_to_wake_up(S)
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if any of the first three operations above fail, the worker is killed via SIGSEGV. Note that
ttwu(S) is not required to succeed, as the server may still be transitioning to sleep in
sys_umcg_wait(); before actually putting the server to sleep its UMCG state is
checked and, if it is RUNNING, sys_umcg_wait() returns to the userspace;
if the worker has its LOCKED flag set, block detection does not trigger, as the worker is
assumed to be in the userspace scheduling code.

wake detection: worker wakes in the kernel: W:BLOCKED => W:IDLE:
all workers' returns to the userspace are intercepted:

start: (a label)
if W:RUNNING & W.next_tid != 0: let the worker exit to the userspace, as this is
a RUNNING worker with a server;
W:* => W:IDLE (previously blocked or woken without servers workers are not
allowed to return to the userspace);
the worker is appended to W.idle_workers_ptr idle workers list;
S := *W.idle_server_tid_ptr; if (S != 0) S:IDLE => S.RUNNING;
ttwu(S)
idle_loop(W): this is the same idle loop that sys_umcg_wait() uses: it breaks
only when the worker becomes RUNNING; when the idle loop exits, it is assumed
that the userspace has properly removed the worker from the idle workers list
before marking it RUNNING;
goto start; (repeat from the beginning).

the logic above is a bit more complicated in the presence of LOCKED or PREEMPTED flags,
but the main invariants stay the same:

only RUNNING workers with servers assigned are allowed to run in the userspace
(unless LOCKED);
newly IDLE workers are added to the idle workers list; any user-initiated state
change assumes the userspace properly removed the worker from the list;
as with wake detection, any "breach of contract" by the userspace will result in
the task termination via SIGSEGV.

worker preemption: S:IDLE+W:RUNNING => S:RUNNING+W:IDLE|PREEMPTED:
when the userspace wants to preempt a RUNNING worker, it changes it state, atomically,
RUNNING => RUNNING|PREEMPTED and sends a signal to the worker via tgkill(); the
signal handler, previously set up by the userspace, can be a NOP (note that only
RUNNING workers can be preempted);
if the worker, at the moment the signal arrived, continued to be running on-CPU in the
userspace, the "wake detection" code will be triggered that, in addition to what was
described above, will check if the worker is in RUNNING|PREEMPTED state:

W:RUNNING|PREEMPTED => W:IDLE|PREEMPTED
S := W.next_tid
S:IDLE => S:RUNNING
try_to_wakeup(S)

if the signal arrives after the worker blocks in the kernel, the "block detection"
happened as described above, with the following change:

W:RUNNING|PREEMPTED => W:BLOCKED|PREEMPTED
S := W.next_tid
S:IDLE => S:RUNNING
try_to_wake_up(S)

in any case, the worker's server is woken, with its attached worker (S.next_tid) either
in BLOCKED|PREEMPTED or IDLE|PREEMPTED state.

Server-only use cases
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Some workloads/applications may benefit from fast and synchronous on-CPU user-initiated context
switches without the need for full userspace scheduling (block/wake detection). These applications
can use "standalone" UMCG servers to wait/wake/context-switch, including across process
boundaries.

These "worker-less" operations involve trivial RUNNING <==> IDLE state changes, not discussed here
for brevity.


